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Abstract 

Bragg diffraction in nearly perfect crystals is treated 
within the framework of  the random elastic deforma- 
tion (RED) model.  Similar to the previous applica- 
tions it is again assumed that each individual  reflec- 
tion event takes place within an elastically deformed 
domain  and hence may be described by either an 
exact or a quasiclassical  solution to the Takagi-  
Taupin  equations.  But because of the high degree of 
perfection a n d / o r  small  thickness of the crystal the 
interaction is confined to one single domain  so that 
the total reflected intensity is obtained just  by sum- 
ming up the contr ibutions from the whole ensemble  
of domains  characterized by different values of the 
deformat ion gradient  and thickness. The present 
approach profoundly  differs from Kato's  statistical 
dynamical  theory which starts with the averaging 
procedure within the Takag i -Taup in  equations 
before solving them. 

1. Introduction 

The RED model  was recently proposed (Kulda,  1987, 
1988a) as an alternative to the mosaic model  to 

* Present and permanent address: Institut Laue-Langevin, 156X, 
38042 Grenoble CEDEX, France. 

describe extinction effects in imperfect  crystals. Its 
main  advantage was expected to arise from the 
more adequate  treatment of  the coherent part of  the 
wave-crystal  interaction. This expectation has been 
confirmed by the first practical tests (Kulda,  1988b) 
with neutron diffraction data collected on compara-  
tively large (several mm) crystals of  SrF2, where both 
pr imary and secondary extinction seemed to play 
about  equal roles. 

At present we wish to examine  to what extent this 
model,  with appropriate  specifications, is valid in 
situations of  p redominan t  pr imary extinction as is the 
case of  thin crystal plates of  comparat ively high per- 
fection, where the effective mosaici ty may not exceed 
a few seconds of  arc. This appl icat ion range, besides 
practical aspects, appears  important  for two theoreti- 
cal reasons. Firstly, it is interesting to find to what 
extent RED,  with its emphasis  on the deformed parts 
of  the crystal, may adequate ly  describe the behaviour  
of considerably perfect crystals. Secondly, it is just  
this kind of crystal to which Kato's theory of extinc- 
tion (Kato, 1976, 1980; Guigay,  1989; Becker & AI 
Haddad ,  1989, 1990) has been appl ied (e.g. Voronkov, 
Piskunov, Chukhovski i  & Maximov,  1987; AI Haddad  
& Becker, 1988; Becker & AI Haddad ,  1991) so that 
a direct compar ison  of the two approaches,  each of 
them making  a d i r e c t - y e t  d i f f e r e n t - u s e  of the 
dynamica l  theory, becomes possible. 
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The aim of the present paper is to provide formulas 
for the calculation of integrated intensities and to 
discuss some qualitative features of their behaviour. 
The practical application of the new formalism to 
extinction effects in highly perfect magnetic crystals 
will be reported elsewhere (Kulda, Baruchel, Guigay 
& Schlenker, 1991). 

2. Basic assumptions 

We retain the previous concept of a crystal composed 
of elastically deformed domains, but with an impor- 
tant change in the scale of their dimensions (cf. Fig. 
1). In the previous papers we assumed their size to 
be much smaller than the crystal thickness t (or the 
corresponding beam path T) and we even required 
the mean path r between the subsequent reflections 
to obey r ,~ T for the energy transfer equations (ETE) 
to be applicable. Now we turn to the opposite limit 
of the domain size T being comparable to T (i.e. 
r >> T) where the beam is likely to interact only with 
a single domain along its path through the crystal. 
There will be, however, different domains along 
different paths and the reflected intensity will be a 
sum ofthe contributions of all of them. For this reason 
the assumption concerning the links between neigh- 
bouring domains (continuity of the misorientation), 
playing an important role in the previous presenta- 
tions of RED, has no effect now. On the other hand, 
this offers some space to relax the quite strict require- 
ment for the constancy of the deformation gradient. 
Instead we shall assume suitable continuous distribu- 
tions w~(t) and w2(R) of the crystal thickness t and 
effective bending radius R, respectively, and calculate 
the integrated reflecting power as 

~ = J ~ p ( t , g ) w ~ ( t ) w 2 ( g ) d t d R .  (1) 

Also, the reflection by a single domain will now be 
treated in greater detail. As it is desirable to make 
the present model applicable to nearly perfect crystals 
we cannot require the misorientation range ~0 within 
a single domain to exceed greatly the Darwin width 
wo (cf. Appendix B for definition and list of symbols) 

x "~ ' . . - i 

t t~  it 

I 

( a )  ( b )  

Fig.  1. T h e  b e a m  p r o p a g a t i o n  in  a c rys t a l  c o m p o s e d  o f  d e f o r m e d  
d o m a i n s :  ( a )  s i t u a t i o n  c o r r e s p o n d i n g  to  the  R E D  m i x e d  t y p e  

model (Kulda, 1987) with f<-r_< t; (b) for the present RED 
variant f--- t and r becomes irrelevant. 

and hence we cannot use the former asymptotic for- 
mula (Kulda, 1984), 

p=80[1-exp(QkinR/cosO)] ,  (2) 

as a general expression for the integrated reflecting 
power. Instead we have to consider the more accurate 
solutions of the Takagi (1969)-Taupin (1964) 
equations (TTE) which cover properly the transition 
from perfect to slightly deformed crystals. 

3. Averaging the exact solution of the "VI'E 

The most straightforward way to describe diffraction 
by a single domain is to solve the TTE. There is an 
exact analytical solution available for the trans- 
mission case and a constant strain gradient 
(Katagawa & Kato, 1974; Chukhovskii & Petrashen', 
1977) which may be expressed in terms of the 
confluent hypergeometric function ~F~(~, 1, ~') (e.g. 
Abramowitz & Stegun, 1970). On the Y scale (angular 
deviations scaled by the dynamical reflection width) 
we may write 

A 

py= 7r ~ I~F~(-i/2v, 1 , - 2 i r a ( a - A ) ) [  2 da. (3) 
0 

Here A is the reduced beam path and v represents 
the reduced deformation gradient, defined as in our 
previous papers where it was, however, denoted by 
c (which would now interfere with another symbol). 
In the case of pure lattice plane bending its value is 
related to the actual bending radius by 

v = 7r COS O/QkinR (4) 

where Qkin is the kinematical reflecting power. 
In many practical cases it is quite safe to assume 

that the sample thickness fluctuates at random about 
a mean value ? and that the deviations are normally 
distributed, i.e. 

wl(t)=(1rZ/2At) -l exp[--(t--?)2/At2].  (5) 

While the value of ? is usually known, its relative 
standard deviation At/? is difficult to be determined 
experimentally and therefore it has to be considered 
as one of the free parameters of the model, influencing 
the extent of damping of the oscillatory component 
of the integrated reflectivity. Fig. 2 illustrates the effect 
of thickness fluctuations on the integrated reflectivity 
calculated according to (1) with the use of (3) and 
(5). As expected its importance diminishes with 
increasing deformation gradient which itself also 
damps the Pendell6sung oscillations. 

For the effective bending-radius magnitude, on the 
other hand, the Gaussian distribution may prove too 
limiting: the maximum R cannot exceed twice the 
mean R, otherwise a tail of w2 reaches negative values 
of R. On the other hand, one can easily imagine highly 
perfect regions coexisting with strongly deformed 
ones in a crystal containing any kind of lattice defects. 
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Moreover, according to (2), the reflectivity of part of 
a crystal is determined by the misorientation spread 
sensed by the incident beam and hence, within certain 
limits, smaller but more distorted domains may be 
responsible for the largest portion of reflected 
intensity. For these reasons the use of a potentially 
asymmetric y distribution (cf  Appendix A) for w2 
appears preferable; the probability density w2(R) is 
then given by (A1) with a and /3 characterizing not 
only its mean and variance but also its shape. It should 
be noted that the Gaussian distribution remains 
included as a limiting case for a ~ ~ .  

For our purpose we shall prefer to replace /3 in 
(A1) by R / ( a  + 1) and use the mean effective bending 
radius directly as one of the  parameters of our model. 
With the help of a substitution 77 = (a + 1 ) R / R  the 
distribution w2(R) can now be put onto a reduced 
scale 

w2(r/) = rl'" e - ' /  I'( oe + 1) (6) 

with both mean and variance equal to o~ + 1. 
The integrated reflecting power averaged over 

deformation gradient fluctuations is obtained by sub- 
stitution of (3) and (6) into (1). To the author's 
knowledge it is impossible to perform the necessary 
integrations analytically and so the only practical way 
appears to be numerical quadrature. Figs. 3 and 4 
display a selection of the curves fi(A, ~, c~) to demon- 
strate the effects of the varying values of the par- 
ameters ~ and o~ on the integrated reflectivity. The 
increase of the slope of tS(A) at small a is an obvious 
consequence of the asymmetrical shape of the 3' distri- 
bution, which in these cases predicts a large propor- 
tion of small v's giving rise to almost kinematical 
scattering events. 

In practical applications the integrated reflectivities 
have to be converted to the angular scale by multipli- 
cation by a factor which for the rotating-crystal 

0.00 
).00 

I 0.00 

= . u = 1 . 0  

v = 0 . 2  

2.60 ,.6o 6.& a.& ,o.~ ,2.00 
A 

Fig. 2. The effect o f  crystal- thickness  f luctuations on the diffracted 
intensity: the dashed  curves represent  integrated reflectivities 
c o m p u t e d  accord ing  to equa t ion  (3) for two s t ra in-gradient  
values v = 0.2 and v = 1.0 while the solid ones were ob ta ined  
f rom them by averaging  due to a Gauss ian  spread  (equat ion  5) 
with At/~- = 0.2. 

method amounts to [F~;la2/rrI2 sin 20. The reduced 
deformationn gradient ~ has to be related to the 
mean effective bending radius /~ by an expression 
analogous to (4), ~=C(c,O)/Qk~,R,  where the 
function 

C ( c , O ) = [ c + ( 1 - 2 c ) c o s 2 0 ] / c o s O  (7) 

approximates the possible angular variation of the 
deformation gradient. Formula (7) is a modified ver- 
sion of a similar formula given in a previous paper 
(Kulda, 1988a). In its present form it provides exact 
expressions for 620/6so6s~ in both limiting cases of 
pure lattice-plane curvature (c = O) and pure lattice- 
parameter variation (c = 1) while the O-independent 
outcome (c = 0.5, introduced for compatibility with 
the mosaic model) is not now available. 

4. Averaged quasiclassical rocking curve 

As an alternative to the starting point of the preceding 
section we may use the quasiclassical plane-wave 
solution reported recently by Kulda & Lukfi~ (1989). 
According to this approach the rocking curve of a 

2& 4& 860 

O( = 1 . 0 0  v - , 0 . 0  

- 5 0  

v - 2 0  

6.00 

, I . .00  

v -  1.o 

~, - 0.6 

0.00 
o.oo 6 &  ,o.'oo ,2o0 

A 

Fig. 3. Averaged  integrated reflectivities calculated for  different 
values ~ of  the effective reduced  strain gradient ,  a y dis t r ibut ion 
with a = 1 is c o m m o n  for all curves. 

a - o.1 

12.00 a 1 .o 
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0.00 
oo, z& , &  860 86o ,0bo ,200 

A 

Fig. 4. Averaged integrated reflectivities calcula ted for ~ = 1.0 with 
var ious shapes  for  the y dis t r ibut ion (cf. Fig. 6); dashed  lines 
represent  the co r re spond ing  result ob ta ined  f rom the asympto t i c  
fo rmula  (10). 



sufficiently thick and slightly deformed crystal may 
be described by 

Po[ Y(O)] 

(8) 

1[ =~ 1 
A l Y(O) Y(A) +cos {~ [1+ Y(a)2] '/2 da} 
0 

[1 + Y(0)2]'/2[1 + Y(A)2] '/2 

16.oo 

with Y and A representing the reduced misorientation 
angle and beam path. The corresponding integrated 
reflecting power py has to be obtained numerically. 
For stronger deformations py has to be multiplied 
by a factor 1 - e x p  [-QkinR/C(c,  0)] accounting for 
the interbranch scattering effect (creation of new 
wavefields). 

Following the general idea of § 2 we have again to 
average this py using a suitable probability distribu- 
tion for R. After making certain simplifying assump- 
tions including the choice of a Gaussian distribution 
for R and separate averaging of individual terms in 
(8) we would arrive at an analytical result reported 
elsewhere (Kulda, 1989). Another advantage, besides 
the closed form, is related to the fact that the concept 
of the rocking curve is in many cases closer to experi- 
mental reality than the intensity distribution across 
the Borrmann fan so that the theoretical predictions 
may be more instructive from a qualitative point of 
view. On the other hand, the underlying quasi- 
classical approach ceases its validity for thin crystals 
(thickness of the order of the extinction length and 
less, A -< 1) where the need for this type of extinction 
model still seems to be great. 

For thick nonabsorbing crystals (A >- 2) and defor- 
mations strong enough to provide a misorientation 
range 80 = TC(c, O)/R largely exceeding the dynami- 
cal reflection width, the rocking curve of (8) may be 
approximated by a rectangle of width 80 and height 
1 - exp [ -  Qki,R/C(c, 0)]. The integrated reflectivity 
is then given by the asymptotic expression (2). 

p:~ 8.00 

o.oo 
o.oo 

w 
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Fig. 5. The effect of the strain-gradient distribution on the 
integrated reflectivity as predicted by the asymptotic formula 
(10): the three curves from top to bottom correspond to a = 0.1, 
1, 10, respectively, the reduced thickness A = 5. 

Employing now the y distribution of the bending 
radius [(6)] we get a comparatively simple analytical 
result 

:o=(T/R)C(c, O)[(a + 1) /a]  

[ ( × 1 -  l + c ( c , O )  a + l  (9) 

which on the y scale reads 

~y=f,A[(ot+l) /a]{1-[ l+Tr/~(ot+l)]- '~} .  (10) 

As ~ is proportional to the crystal thickness within 
this approximation (cf. dashed line in Fig. 4), the 
averaging procedure modifies only the slope O~/OA 
and this effect might be simulated just by a choice of 
a slightly different 17 value. The shape of the ~y(zT) 
dependence is modified more profoundly as illus- 
trated by Fig. 5. 

5. Concluding remarks 

Formulas given in the preceding sections enable, 
within our assumptions, an almost exact description 
of the integrated reflectivities in the entire range 
between perfect and ideally imperfect crystals. An 
important feature of the calculated results is the per- 
sistence of the first PendelliJsung maximum for a wide 
range of thickness and deformation gradient distribu- 
tions. Figs. 2, 3, 4 indicate that appreciable extinction 
effects have to be expected even in experiments with 
quite small (T-~ A -~ 10°-101 ~m) crystals. 

Although the examples of calculated reflectivities 
in Figs. 2-4 refer to symmetrical transmission 
geometries and zero-absorption cases, the generaliz- 
ation of the present model is quite straightforward. 
In fact, formula (3) for the exact solution of the TTE 
in its original form already contains the asymmetry 
factor b and absorption can be included via the 
imaginary part of the structure factor entering the 
parameters u and A (cf. e.g.  Chukhovskii & 
Petrashen', 1977). For the quasiclassical solution the 
introduction of asymmetry and absorption largely 
complicates the resulting formulas, which cannot be 
written in the simple form of (8) any more as reported 
in some detail in the paper of Kulda & Lukfi~ (1989). 
Fortunately, from the computational point of view 
these complications are not essential. 

The last point we would like to touch on is the 
relation of the present treatment to Kato's (1976, 
1980) theory which is usually considered as the most 
general approach to a description of extinction effects. 
Owing to the averaging of the phase factor of the 
dynamical wavefields within the TI'E at the initial 
stage of Kato's procedure, the coefficients of his new 
equations lose any dependence on position in the 
crystal. Hence their solution implies for any point 
source on the entrance surface identical diffracted 
intensity calculated as the modulus squared of some 
mean amplitude. On the other hand, within RED, as 
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the order of  the integration procedures in (1) and (3) 
is interchangeable ,  one may consider t5 as an integral 
of  a mean reflection profile over the exit surface. 
Therefore intensities corresponding to various poss- 
ible solutions of the TTE are averaged in this case 
and all the resulting reflected power is attributed to 
a coherent process. We believe that exper imental  
evidence (e.g. diffraction topography)  is often in 
favour of diffracted intensity varying with posit ion 
on the exit surface and summing  to form the total 
diffracted intensity. 

My sincere thanks go to all who contributed to this 
work through discussions and advice, in part icular  I 
would like to ment ion Michel  Schlenker,  Jos6 
Baruchel and Jean-Pierre Guigay from whom came 
a great deal of  motivation for this problem. I also 
acknowledge the hospital i ty of  the Institut Laue-  
Langevin, Grenoble ,  where a part of  this work has 
been done. 

obtain for a fixed value of  the mean a large variety 
of  distr ibution shapes ranging from nearly an 
exponent ia l  at a -  0 to nearly a Gauss ian  at a -  oo 
(cf. Fig. 6). 

A 
C(c,O) 

Fo 
Qkin 

R 

t 
? 

T 
WD 
Y ( A )  

A P P E N D I X  A 

The V dis tr ibut ion 

A random variable ~: is subject to a 3' distr ibution 
when the probabi l i ty  of  finding its value between x Ac 
and x + dx is given by 0, 0~ 

X" e -x/t3 A 
w ( x )  d x -  F ( a  + l)  /3~+' dx (A.1) v 

for x-----0 and by w ( x ) =  0 for x < 0. As can be easily 
verified, the mean value of  ~: is then pY, po 

(~) = (a  + 1)/3 (A.2) t5 

and its variance is z 

( ( ~ - ( ) 2 ) = ( a + l ) / 3 2 = ( ~ ) 2 / ( a + l ) .  (A.3) .(2 

For the present purpose the 3' distr ibution is attractive 
main ly  because of the large flexibility with which its 
shape may be varied. According to (A.2) by an 
appropriate  choice of the a and /3 values we may 

0.60 

(c) 

0.40 

~" (a) 

0.00 
o.oo 260 4.60 660 8.00 

x 

Fig. 6. Three typical shapes of the 3' distribution corresponding 
to the same mean (x)= 3 but with different a equal to (a) 0.1, 
(b) 1 and (c) 10. 

A P P E N D I X  B 

List o f  important  symbol s  

reduced beam path ( A  = T / A c ) .  
angular  dependence  of the RED deformat ion  
gradient  (equat ion 7). 
structure factor. 
kinematical  reflectivity 

(Qkin = F 2 A 3 / f 2  sin 20). 
local effective bend ing  radius. 
mean  effective bending  radius (RED 
parameter) .  
sample  thickness. 
mean  sample  thickness. 
beam path in sample  (T  = t /cos  0). 
Darwin  width [WD = F G A 2 / ( f / s i n  20)]. 
reduced misor ientat ion [ Y = rc(08 - 0 ) / w o ] .  
parameter  of  the 3/ distr ibution (Appendix  
A). 
extinction length (Ao = f2/FcsA). 
Bragg angle. 
neutron (X-ray) wavelength. 
reduced deformat ion  gradient  (u = 0 Y / O A ) .  
mean reduced deformat ion gradient  
(equation 7). 
integrated reflecting power on Y and 0 
scales, respectively. 
averaged reflecting power (equation 1). 
mean  path between equal ly oriented domains  
(RED - mixed type extinction). 
unit-cell  volume. 
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